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Easy-to-Apply Results for Establishing
Convergence of Markov Chains in Bayesian

Analysis

Krishna B. Athreva *

iowa State University

Hani Doss rand Jayaram Sethuraman

Florida State University

Abstract

The Markov chain simulation method has become a powerful computa-
tional method in Bayesian analysis. The success of this method depends
on the convergence of the Markov chain to its stationary distribution. We
give two carefully stated theorems, whose conditions are easy to verify, that
establish this convergence. We give versions of our conditions which are sim-
pler to verify for the Markov chains that arise most commonly in Bayesian
analysis.

Key words and phrases: Bayesian Poisson regression; calculation of posterior dis-
tributions; ergodic theorem; Markov chain simulation method.

1 Introduction

Let -,r be a probability distribution on a measurable space (X, 3). The Monle
Carlo Markov chain method is a technique for estimating characteristics of 77 such
as ir(E) or f.fd7r where E E 6 and f is a bounded measurable function, and
which is useful when 7- is too complex to describe analytically. The idea is very

"*Research supported by National Science Foundation Grant DMS-92-04938
lResearch supported by Air Force Office of Scientific Research Grant 90-0202
1Research supported by Army Research Office Grant I)AAL03-90-G-0103



straightforward. W\e construct a transition proba iitv \' uticiion 11 .r. wl] thc' ~
pro)[ertN t 1hat it has stati o~nary (istr11btiaon -r, i.e.

(C) 1 / I'r , C )77( (d7-) for al I (' -, B. (

Then. we generate a Nlark-ov chain { NXJ witht this tranlsitiol: plrobai'llily fl1!&ý vaIJI
as follows. \Ve fix a start Ing( poUnit x0. generate anl observatIion I I [ rol I¾ P Xu.

generate anl observa~tion A'.) [fron iP(XI ) etc. Th is produtc(s t I NI Marko% cliai ii
-'o= X. -VI, X2 ,.. -\We use this constructilon inl one( ol two wiivs. "it hcr %%c

discard an initial segmient A0. X, ,A 2 . .... .V,r of tlire Marko\, chain'. wiii '1 w Ii 1we
chain has niot vet convergred to its st ationary distri butioni. and rctlwi 'iihe rdof
the. chain, or we i depenldelitly runl a large ailui belr of c~laills all [ for ca cl rvet auii
on lv the last observatLion. Ihr (ither case we we use the observations. that we x

kept t~o olbta~in empirical estim-ates of those [cati nres of -,that are of inlterest.

Imrplicit in this method is tile assumiption thint, the chain con verf-les to its sina-

tionarv distribution, for a wide class of st~arting, p~oint~s xo. Indeed. orm( canf easily~i'

give examples of Mlarkov chains that do riot converge to thecir stationlary- distribu-
tion from any' starting point. Thus, to establish the validity of tile miethod)(. it is
crucialI to obtain results that give conditions which limply convergence of thre chairs.

The Markov chain literature already contains mnans' results that give, conditi onls
under which the Markov chain converges to its statioiiarv distribni)ton for a cliiss,
of starting points xo vhich have probability one under -,(t~his condition is calledl
ergodicity). Unfortunately. when one comes to apply thýese resillts. one ), ediat clvll
notices that in stalistical appli cations, tile conditions of these t licorcins are vint iiall\v
Impossible to check.

In our work we have obtained two theorems (Theoremis I arid 2 below) that
assert ergodicitv of the chain under conditions that are extremlylt easy to verify inl
a wide range of problems that are likely to arise in Bayesian statistics. These thle-
orerns pcrtain. roughly. to the two miodes of using the Markov chain const ructioni.

Before explaining our theorems, it. is useful to give anl idea of tire wide scope. of, the
problems that can be approached via the Monte Carlo Markov chain mnethod-1.

There are many ways to produce a transition function satisfyirng (1.1). .Met-
ods include the Metropolis algorithm and its variants, and( the so-called Gibbs
sampler. This last method appears to be the one that is thle Irios'r widely used
in Bayesian statistics, and we now proceed to describe ii . This algorithmi isl
used to estimate thle unknown joint distribution 7, = 7ý....X(,) of thle (possi-
bly vector-vahied) random variables (X0(), .. X'(P)) by updlating tire coordinal CS
one at a time, as follows. WVe suppose that we know tile condlitional disti niil-

tins7~w ~ ~ 2' 1,.p or at least that w,.e are able to generate observa-

tions from these conditional distributiorls. If X,, == (XM~ .... V)I's the current
state. the next state -V,,+ (X __ .-. , X0)' ) of the NI rrkov chraini is formed
a~s follows. Generate Q). fromn f' r \t).l')). I
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6 2) ( (l )) and so oil unitil f +t

u(•){ \X{) Jl ; (,-) 1)" ') (l)') If P is the trai Sit iol fi llionl that pruod c(es

Xm+1 from X,", then it is easy to see that P satisfics (1.1).
NVe now give a very brief description of how this inithod is useful iII some

Bayesian problems. \W"e suppose that the parameter f3 has soiie prior distri)hut ion.
hat. we observe a data point V whose conditional (list ri Lii gi ol 1ven 0 i- L(} ) - .

and that we wish to obtain C(O) I "). the conditional distribution of 9 given . I is
often the case that if we consider an (unobservable) auxiliary random variable Z.
then the distribution io.z = C(O. Z I ) has the property that . (= L(0 zY. 2)
and 7z10 (= £(Z 11 " 0)) are easy to calculate. Typical exaljiples are missing anld
censored data problems. If we have a conjugate family of prior distributions ,Il
0, then we may take Z to be the missing or the censored observations, so that
7olz is easy to calculate. The Gibbs sampler then gives a random observation with
distribution (approximately) £(O, Z I Y), and retaining the first coordinate gives
an observation with distribution (approximately) equal to .(O "YV).

Another application ariscs when the parameter 0 is high dimensional, and we
are in a nonconjugate situation. Let us write 0 = (01,...,0k), so that what we wish
to obtain is ra ..... 6,. Direct calculation of the posterior will involve the evaluation
of a k-dimensional integral, which may be difficult to accomplish. On the other
hand, application of the Gibbs sampler involves tile generation of one-dimensionai
random variables from j,i{e• j-). The generation of random variables from a one-
dimensional distribution is in general much easier than from a multidimensional
distribution; very often special tricks can be used. We illustrate this with an ex-
ample in Section 2 below. In addition, we note that the distribution 10,11 f, at} is
available in closed form, except for a normalizing constant. There exist very effi-
cient algorithms for generating random variables from such a distribution, provided
the distribution is unimodal; see Zaman (1992).

2 Illustration of the Markov Chain Simulation
Method: Bayesian Poisson Regression

As a typical application of how the Gibbs sampler helps in high dimensional prob-
lems, we consider a model involving Bayesian Poisson regression. This model is

I -- Poisson(Ai), Ai = I= XiJ3, i = 1,2,_,7,

where the aijj's are non-negative covariates, and where the prior distribution on
the Oj's is a product of Gammas. In this case, the likelihood function is

p(A) = flexp(-Ai)--
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= (1!y!..i.. ' (Y ,- j-exp - Xi 333•) H(r> ,

and the joint density of the 3 ,'s is given by

P baj

f[i(31. .... - -I - -3 '- exp(-b 3 /3 )
= IV(a) P

0C exp( Z b> )i:j 3,;'i' .

where aj is the shape and b. is the scale parameter for the distribution of i3j.
j = 1,'2,... ,p. The posterior joint density of the 3's, given i he d(ata. is th.rre

•('3,~ ~ P3 F-p ,• ex Xj:
j=l 1=l = 3=1

where z = bj + F= 1xij. j 1, 2,. , p. To determine the posterior joint density
of the nj's exactly, the constant of proportionality needs to be determined. This
requires high-dimensional integration. However, the Gibbs sampler can be used if
:e know the conditional distributions of any Ai given the rest of the ý3's and the

data.
To compute the conditional density of any "k, k = 1,2 p., given the rest

of the #j's and the data, we proceed as follow. For each 1. 1 < I < p. let .51 =
{1,2,. . . ,p}\ {/). Then for each k, the density of Ok, conditional on all 3:, j E Sk:
and the data is the discrete mixture of Gamma densities

/•ak-1 fl,

fkb3,JES.,(13 k) x /-k exp(-vA-k) ]j(ci + Xik!3 k)",
i=1

where ci = Ejes xij%. Let rn. = _L1 yj and write

n m

fJ(Ci + Xik!3k)" = I lko'
i=l 1=0

where we explicitly show the dependence of the coefficients on k. Then.

C-s~,, s( 3 k.) cx i (k)l0"k+l-I exp(--vtkk)

and we readily recognize that

f.0.,,JESk(fOk) = p,(k)g.+1,k(3k),
1=0

where gp,q(x) denotes the gamma density with shape parameter p and scale param-
eter q in x, and pl(k) = rI(k)I'(ak + 1)/v"+'. The p,(k)*s are the discrete mixture
probabilities.
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3 Convergence Theorems

Before siating our theorems, we will needi a few dlefluil ions coternnn .
chains. Let P'(.-) denote the distribution of X,, whe,, th' cthai,, is slattcd al
.X. Also, for a set C' E 13. lot '1(C) = iuf{li n > 0, X\,, C C) be the first fI:NII

Ihe chain hits C, after time 0. Finally, for all) subset I of the posi tive Il' t.1('!
g.c.d .(2) will denote the greatest coninon divisor of the integer- in 1.

Theorem I Suppose that the AMarkov chain { X,,} with (ransit ion function J)( '. (
has an invariant probability measure -r, i.e. (1] ) holds. Suppose that there is a
A E B3, a probability micasure p with p(A) = 1, a constant c > 0, aind an m111,","

I? o 1 such that

and , {ýx :PT(T(A) < ~)> 0} 1. (3. 1i

P'`°(0,-) _ (fp(.) for each a C A.3.2

Suppose further that

g. c.d.{ n > 1: there is an Cm > 0 such that sup P"(x.,.) ( ,,(.)} = 1. (:1--1)

Then there is a set Do such that

r.(Do) 1 and sup IF'(x, C) -r, (C) --- 0 for each x E Do. (3.4)
&EL

Theorem 2 Suppose that the Markov chain {fX, } with transition function P(.r C')
satisfies conditions (1.1), (3.1) and (3.2). Then

1up , , as - -, • for ,]-al•nost all x, (3)4

CE 0 r=0

and hence

sup IC)- r(C -- 0 as n --, 0C for [H,,-almost all X. (3.6)
CEL5 =

Let f(x) be a measurable function on (X.', B) such that f 7(d:q)jf(y)t < oc. Thcr

P. 'tI f(Xj) -rjr(dy)f(y) I for [r]-almosi all xr (3.7)

and

1 E, (f(X.) ) - f(dy).f*(y) I for [wj-ahos. all x. (3.8)
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Theorein 1 requires condition (3.3), while Thcorein 2 does not. Theorem 2
states that if condition (3.3) is violated, one call still apply the Markov chail

simulation method, except that one has to work with averages of dependent rando(
variables instead of runining a large Iumnber of independent chains and working

with an (approximately) independcnt sample. These two theoreis are proved inI

Athreya. Doss. and Sethuranman (1992). where it is also shown that these are the

weakest possible conditions that will ensure convergence of a Markov chain for a
set of starting points having probability one under the stationary distribution.

There are already many theorems that give conditions that guarantee ergod-
icitv of Markov chains. See the discussion in Section 1 of Athreva, Doss. and
Sethuraman (1992). Mlost of these theorems are stated under two general classes
of conditions. Conditions inl the first class involve verification of a "recurrence
condition" which is much stronger than our condition (3.1). Conditions in the sec-
ond class of involve the stationary distribution of the chain. Since this stationary
distribution is unknown, these conditions are difficult to verify. In contrast. our
theorems are stated under conditions that involve only the transition function, and
thus are, in general, easier to verify.

Theorems 1 and 2 pertain to arbitrary Markov chains. As we mentioned earlier.
the Gibbs sampler is the most commonly used Markov chain in Bavesian statistics.
We now give a result that facilitates the use of our theorems when the Markov chain
used is the Gibbs sampler. We use the notation of Section 1, and assume that for
each i, the conditional distributions -.xj- {x(;i} have densities. say Px,!{xw i •,\ "

with respect to some dominating measure pi.

Theorem 3 Suppose that for each i = 1 ..... - there is a set Aj with p,(A.) > 0.
and a 6 > 0 such that for each i = 1 .... k

PX,j{x(w ..j}(x( .... , x(k)) > 0 (3.9)

whenever

x(1) E A,,...,x(i) E Ai, and x('+), , are arbitrary,

and
PXl{.w i} (x (1)" ... ,x(k)) > 6 whenever x(j) E Aj, j .I,

Then conditions (3.1) and (3.2) are satisfied with no = 1. Thus, (3.3) is also
satisfied, and the conclusions of Theorems I and 2 hold.
We note that condition (3.9) is often checked for all x(),... .T)

This theorem is immediate for the case/, = 2. For the general case the proof
follows by induction.
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